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A B S T R A C T   

The Coronavirus disease 2019 (COVID-19) pandemic has officially spread all over the world since the beginning 
of 2020. Although huge efforts are addressed by scientists to shed light over the several questions raised by the 
novel SARS-CoV-2 virus, many aspects need to be clarified, yet. In particular, several studies have pointed out 
significant variations between countries in per-capita mortality. In this work, we investigated the association 
between COVID-19 mortality with climate variables and air pollution throughout European countries using the 
satellite remote sensing images provided by the Sentinel-5p mission. We analyzed data collected for two years of 
observations and extracted the concentrations of several pollutants; we used these measurements to feed a 
Random Forest regression. We performed a cross-validation analysis to assess the robustness of the model and 
compared several regression strategies. Our findings reveal a significant statistical association between air 
pollution (NO2) and COVID-19 mortality and a significant role played by the socio-demographic features, like the 
number of nurses or the hospital beds and the gross domestic product per capita.   

1. Introduction 

The novel coronavirus SARS-CoV-2 is responsible of the pandemic 
disease, named Coronavirus disease 2019 (COVID-19), which has 
rapidly spread throughout the world since its first identification in 
December 2019 in Wuhan, China (Zhu et al., 2020). By February 2020, 
the diffusion of the virus to all the globe has manifestly shown its 
pandemic behavior (Phan et al., 2020; Chinazzi et al., 2020; Lu et al., 
2020; Onder et al., 2020), until on March 11, 2020 the World Health 
Organization (WHO) officially declared the pandemic (Cucinotta and 
Vanelli, 2020). 

Several clinical and demographic factors affecting the COVID-19 
mortality have been thoroughly investigated (Ji et al., 2020; Dietz and 
Santos-Burgoa, 2020; Promislow, 2020; Baud et al., 2020; Leffler et al., 
2020); in particular, many studies have addressed the sources of varia-
tion between countries in per-capita mortality due to environmental 
factors, such as temperature and humidity (Ma et al., 2020), meteoro-
logical factors (Sarkodie and Owusu, 2020), air quality (Setti et al., 
2020a). 

The role of pollutants in easing the virus diffusion or increasing its 
severity after prolonged exposure has been independently confirmed 
from many studies (Setti et al., 2020b; Berman and Ebisu, 2020; 
Comunian et al., 2020; Azuma et al., 2020; Gatti et al., 2020). None-
theless, these studies have analyzed limited regions, usually not 
exceeding national boundaries, and often focused on retrospective 
considerations such as the impact of lockdown on pollution levels (Yao 
et al., 2020; Adams, 2020; Li et al., 2020; Metya et al., 2020) more than 
the assessment of an association between the presence of high levels of 
pollution and an increased severity of the disease and its effects. 

The prolonged exposure to fine particulate matter has been statisti-
cally associated with COVID-19 mortality by several studies (Wu et al., 
2020a; Setti et al., 2020a; Marquès et al., 2020; Becchetti et al., 2020). In 
general, two different perspectives arise: on the one hand, some studies 
emphasize the statistical association between pollution exposure and 
COVID-19 mortality as a matter of causal inference; on the other hand, 
other studies explore the possibility for pollutants to be effective vectors 
of contagion and therefore attempt to explain the increase in mortality 
and severity in terms of dynamics. 
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A major issue discouraging the investigation of the relationships 
between pollution and COVID-19 severity is the difficulty to collect a 
sufficiently robust base of knowledge based on on-ground measure-
ments. However, thanks to remote sensing imagery and specifically 
thanks to the satellite Sentinel-5 Precursor (S-5p) (Veefkind et al., 2012) 
it is possible to find a workaround, at least for some specific pollutants. 
In fact, thanks to the TROPOspheric Monitoring Instrument (TROPOMI) 
spectrometer, the S-5p missions allow the observation of key atmo-
spheric constituents, such as ozone (O3), nitrogen dioxide (NO2), carbon 
monoxide (CO), sulfur dioxide (SO2), methane (CH4), formaldehyde 
(CH2O), aerosols and clouds. Although, the S-5p worldwide coverage 
allows the investigation of pollutants’ concentrations through the whole 
globe, this study focuses on the European region, which provides a 
roughly homogeneous area for geographic, climatic and socio-economic 
features, therefore excluding factors which could potentially blur the 
association between pollutants and COVID-19 mortality. 

Thus, in this work, we collected and analyzed the data acquired by S- 
5p missions since June 2018 to feed a regression model explaining the 
variation of COVID-19 mortality throughout all European countries; in 
particular our analysis focused on administrative regions of about 
50–70, 000 km2 The main goal of this work was the assessment of a 
(significant) statistical association between pollution and COVID mor-
tality. A not secondary aspect of this work was identifying and evaluate 
the role played by the different features in this association. In particular, 
we evaluated to which extent pollutants are relevant in increasing the 
pandemic severity. Our findings reveal that the differences in pollution 
levels can explain the observed differences in mortality on the conti-
nental scale and the major role is played by NO2. 

2. Materials 

The Copernicus S-5p mission is the first Copernicus mission dedi-
cated to the monitoring of the Earth’s atmosphere and, specifically, air 
quality, climate and the ozone layer in the timeframe 2015–2022. S-5p is 
the result of the collaboration between ESA, the European Commission, 
the Netherlands Space Office, industry, data users and scientists. The 
satellite’s single payload instrument is the TROPOMI spectrometer, 
which, thanks to its wide field-of-view (~ 2600 km), allows a daily 
coverage of the globe. The TROPOMI four different detectors provide 
high resolution (typically 7 × 7 km2) spectral measurements of eight 
distinct bands in the ultraviolet (UV), visible (VIS), near infrared (NIR) 
and shortwave-infrared (SWIR) range, see Table 1. 

The information provided by the spectral bands yields the estimation 
of concentrations for several pollutants. For the purposes of the present 
study which aims at investigating the association between pollution and 
COVID-19 mortality, only the concentrations of O3, NO2, CO, CH4 SO2, 
aerosol, CH2O and Cloud were considered. Besides, thanks to the Eu-
ropean Centre for Medium-Range Weather (ECMRW) data which pro-
duces the ECMWF Re-Analysis (ERA), we obtained a thorough coverage 
of climatic variables across Europe since 1979. Currently, the fifth 
generation ECMWF reanalysis, called ERA5, provides an horizontal 
resolution (~ 51 km) and an hourly estimation, among the most sig-
nificant improvements compared to previous releases (Hersbach et al., 
2020). In this study, among ERA5 measures we considered only AH2m. 

From the daily coverage, we retrieved the mean values for the con-
centrations of the selected pollutants. Furthermore, it is worth noting 
that, given the spatial sampling properties of S-5p, countries with tiny 
geographical extensions (below 50 km2) had to be excluded from this 
study. A comprehensive overview is provided in Table 2. 

Data about COVID-19 mortality were collected from the Joint 
Research Centre (JRC) (https://github.com/ec-jrc/COVID-19). The 
website provides a monitoring in the European area of sub-national data 
(administrative level-1 regions which represent the largest administra-
tive subdivision of a country) in terms of COVID-19 fatalities for million 
of inhabitants; these data are directly collected from National Authori-
tative sources. Along with mortality data, we collected the date of the 

recorded first deaths, a useful information to normalize the epidemic 
diffusion from a temporal perspective. Finally, social and economic data 
were collected from online repositories last accessed in December 2020. 
Specifically, through the Global Data Lab1 we obtained socio-economic 
data like life expectancy and gross domestic product; from the Google 
Cloud Platform2 we accessed other socio-economic data like the number 
of nurses and physicians; finally, we collected COVID-19 data from a 
dedicated github initiative3 We obtained a full description in terms of 
the considered variables for 202 regions. 

Each administrative region was represented by 21 features, the 
aforementioned variables, and 1 target variable, the mortality, thus 
resulting in a 202 × 22 data matrix. 

3. Methods 

3.1. Methodological overview 

The main goal of this study is to evaluate the existence of a statistical 
association between the exposure to pollutants and COVID-19 mortality. 
For this purpose, we collected three distinct types of data, pollutants’ 
concentrations were retrieved from S-5p data, climatic data were 
collected from ERA5 while data characterizing the socio-economic 
context, including COVID-19 mortality were collected from several on-
line repositories which on their turn gathered the data officially released 
from National authorities. Thus, the whole dataset was exploited 
through a learning framework to evaluate the statistical association 
between COVID-19 mortality and the collected variables. We investi-
gated several multivariate regression models, such as Random Forests 
(RF), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM) and 
a simple linear regression (LR) model. From the comparison of these 
models we were able to assess the statistical association between pol-
lutants and COVID-19 mortality, to which extent this association was 
independent from the adopted model and which features were the most 
important in predicting the outcome variable. Furthermore, extensive 
sensitivity analyses were performed to ensure the robustness of the 
models. An overview of the study is presented in Fig. 1. 

In the following paragraphs, a detailed description of all procedures 
(preprocessing, temporal averaging for pollution exposure, spatial nor-
malisation and learning) is presented. 

3.2. Preprocessing and flowchart 

In this work, we exploited a base of knowledge consisting of three 
distinct pillars: pollutants’ concentrations, climatic variables, socio- 
demographic descriptors in order to provide a quantitative framework 
for the assessment of COVID-19 impact, measured in terms of registered 
deaths per million of inhabitants. 

Firstly, we collected data about pollutants’ concentrations and cli-
matic variables from Google App Engine (Gorelick et al., 2017), in 
particular we computed their yearly averages for a simple but effective 
denoising. The socio-demographic descriptors, instead, were down-
loaded from the previously mentioned online repositories in a data-table 
format. We collected data related to the latest year available, in general 
2017–2020. Finally, we collected the time series of COVID-19 deaths per 
million of inhabitants for all available administrative units of the 
countries adhering to the JRC. Our data are updated until 21 November 
2020. Thus, preliminar preprocessing and data harmonization were 
performed before regression analyses. 

The yearly average pollutants’ concentrations and the meteorolog-
ical data were downloaded from Google App Engine in raster format. 
The concentrations were obtained from the collections of Offline 

1 https://globaldatalab.org/.  
2 https://github.com/GoogleCloudPlatform/covid-19-open-data.  
3 https://github.com/ec-jrc/COVID-19. 
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Sentinel-5p L3 products acquired over Europe during the year 2019. 
These data were merged into one large mosaic. The Sentinel-5p out-
comes are acquired along different directions, so that the grids of two 
distinct Sentinel-5p products usually has two different orientations. 
Therefore, it was necessary to spatially normalize the data using a 
unique regular grid. We built the new grid by area-averaging within 
each pixel the values of original pixels overlapping. Climatic variables 
downloaded from Google App Engine underwent an analogous pre-
processing, see Fig. 2 for an example about humidity. 

Once the data were spatially normalized, we estimated the yearly 
exposure to pollutants by clipping each average raster by the adminis-
trative boundaries and then computing the spatial average weighted by 
the NASA density population layer. Accordingly, we estimated the 
values of each climatic variables within an administrative region. 

Next, we included the socio-demographic and COVID-19 mortality 
data to the features describing each administrative region. These data, 
already in a tabular format, did not require a specific preprocessing or a 
harmonization technique. Finally, before the learning phase, (i) we 
cleaned our data from missing values (each missing entry was replaced 
using the median value of that feature) and (ii) we explored the pairwise 
Pearson’s correlation among the considered features to exclude the 
presence of correlated variables. 

3.3. Regression models and feature importance 

Several studies have attempted to model and evaluate the association 
between COVID-19 mortality and pollution exposure. Although, there 

are no guarantees that the variables employed in such studies were in-
dependent and, more importantly, there is no evidence that the re-
lationships between these variables had to be linear, the vast majority of 
proposed models were linear. On the contrary, we refuse here any a 
priori assumptions about the data and, therefore, we consider a more 
general approach which is Random Forests (RF) regression (Breiman, 
2001). RF exploits an internal cross-validation to avoid biased estimates; 
thanks to this, RF tend to be generally robust with performance unaf-
fected by over-training issues. 

It is demonstrated that the accuracy of RF models substantially de-
pends on two parameters, the number of sampled features f and the 
number of the forest trees. Accordingly, RF is probably the simplest non- 
linear model in terms of hyperparameters to be tuned and one of the 
most efficient in terms of computational requirements. In this work we 
adopted the R 3.6.2 implementation with a standard configuration (500 
trees and one third of features for each random split). 

However, the most striking advantage is undoubtedly the possibility 
to use out-of-bag estimates to assess the importance of each feature. In 
this study, we aim at providing a quantitative evaluation of both (i) the 
association between COVID-19 mortality and pollution exposure and (ii) 
the influence of each feature of the model in driving the pandemics or 
aggravating its effects. RF models can evaluate and rank the importance 
of each feature in terms of two distinct metrics: mean decrease accuracy 
and Gini index. 

Mean decrease accuracy (MDA) measures how the regression per-
formance changes if a specific feature is removed from the model. Gini 
index evaluates the nodal purity (in the case of regression using the 
residual sum of square). The latter is not recommended for mixed 
models, i.e. including both discrete and continuous variables (Strobl 
et al., 2007); accordingly, in this study we used MDA values for feature 
importance. 

A standard least-squares linear regression approach or linear model 
(LM) was employed. It assumes a Gaussian distribution of the dependent 
variable and a linear relationship between the input variables and the 
output variable. Linear regression was developed in the field of statistics 
and was studied as a model for understanding the relationship between 
input and output numerical variables. It gained popularity due to its 
simplicity, however it may suffer when dealing with moderate to high 
multi-collinearity in data. 

For further comparison, we evaluated the results of other machine 
learning approaches, namely support vector machines (SVMs) and 
Multi-layer Perceptrons (MLPs). SVMs are learning algorithms (Cortes 
and Vapnik, 1995) which can be proficiently used with non-linearly 
separable observations, provided the existence of a higher dimensional 
space where linear separation can be achieved with a suitable kernel 
function. Geometrically determining a separation hyperplane is equiv-
alent to determining a number of observations, called support vectors, 
best representing the classes of the problem. In this study, the e1071 
(v.1.7 − 3) R package was used (Meyer et al., 2019). A radial basis 
function kernel with the default configuration C = 1 and γ = 1/M was 
adopted, where M is the number of input features. 

MLPs are instead composed by three basic structures: an input layer 
fed by the features, hidden inner layers combining the output vectors of 
previous layers with linear combinations and a final output layer which 
yields the classification result. During the training phase, a back-
propagation algorithm (Le Cun, 1986; Hecht-Nielsen, 1992; Rumelhart 

Table 1 
Main characteristics of S-5p acquisition bands.  

Detector UV  VIS  NIR  SWIR 

Band 1 2 3 4 5 6 7 
Range (nm) 270–300 300–320 310–405 405–500 675–725 725–775 2305–2385 
Resolution (nm) 1 0.5 0.55 0.55 0.5 0.5 0.25 
Spatial Sampling (km2) 21 × 28 7 × 7 7 × 7 7 × 7 7 × 7 7 × 7a 7 × 7  

a This resolution can be reduced to 1.8 × 1.8 km2. 

Table 2 
Outline of the features investigated in this study.  

Variable Type Symbol/ 
Acronym 

Description 

Pollution NO2 (mol/m2) Tropospheric vertical column of NO2  

SO2 (mol/m2) Tropospheric vertical column of SO2  

CO (mol/m2) Vertically integrated CO column density  
HCHO (mol/m2) Tropospheric HCHO column number 

density  
AER AI Prevalence of coarse aerosols in the 

atmosphere 
Climate AH2m (Kg/m3) Absolute humidity at 2 m height  

Cloud Retrieved effective radiometric cloud 
fraction 

Socio- 
Demographic 

Life expectancy 
(yr) 

Life expectancy at birth  

GDP per capita 
($) 

Gross domestic product per capita in US 
dollars  

ESCH (yr) Expected years of schooling of child aged 6  
MSCH (yr) Mean years of schooling of population 

aged 25 and older  
Pop Population  
max(d) Max population density  
avg(d) Average population density  
First death First death by COVID-19  
Age-70 Share of people aged 70 and older  
Beds Hospital beds per thousand of inhabitants  
Smoke Share of smokers  
Diabetes Share of people affected by diabetes  
Nurses Nurses per thousand of inhabitants  
Phys Physicians per thousand of inhabitants  

N. Amoroso et al.                                                                                                                                                                                                                               



Environmental Research 204 (2022) 111970

4

et al., 1986) measures the classification error according to the given 
nodal weights and rearrange the weights in order to minimize the error. 
In this study, the h2o package R implementation (v.3.28.0.4) of MLP was 
used (LeDell et al., 2020). In this study, a simple architecture with one 
hidden layer and 7 neurons (one third of input features) was employed; 
for the sake of simplicity, no regularization or dropout were considered. 
For the activation function we adopted the basic choice offered by a 
Rectified Linear Unit (ReLu). 

3.4. Performance evaluation 

To evaluate the performance of the RF regression we adopted two 
metrics: Pearson’s correlation (r) 

r =

∑N
i=1(yi − y)(ŷi − ŷ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1(yi − y)2∑N

j=1(ŷi − ŷ)2
√ (1) 

and Mean Absolute Logarithmic Error (MALE) 

MALE =
1
N

∑N

i=1

⃒
⃒
⃒
⃒ log 10

(
yi

ŷi

) ⃒
⃒
⃒
⃒ (2) 

where yi and ŷi are the actual mortality and its RF prediction; y, ŷ 
their averages and N the available observations. 

As previously explained, RF models generally ensure a robust per-
formance evaluation thanks to their internal validation. Nevertheless, 
we adopted a 5− fold cross-validation framework to further strengthen 
the robustness of our estimates and minimize overfitting issues, in fact, a 
rigorous application of cross-validation is important to minimize the 
bias affecting the model performance (Maggipinto et al., 2017). 
Accordingly, we randomly divided the data in training (80%) and vali-
dation (20%) sets; the procedure was repeated 5000 times to ensure a 
sufficient statistical power. 

3.5. Feature importance 

Feature selection strategies are usually employed for data reduction 
purposes; reducing the data dimensionality also reduces the computa-
tional burden of machine learning algorithms and, in some cases, can 
improve the model performance. Another important aspect, which be-
comes of fundamental importance in this case, concerns the possibility 
to distinguish which variables are significantly related to the target 
variable. 

Although one of the main advantages of RF is the mentioned possi-
bility to measure and rank the features according to their importance, 
this measure provides continuous values which, unless special situations 
do, cannot distinguish between variables statistically associated or not 
to the target. 

Several approaches have been proposed; they can be generally 
divided into three categories (Tangaro et al., 2015): filter, wrapper and 
embedded methods. Filter methods are generally univariate approaches 
which explore the existing relationship between features and target 
variables, an example generally adopted in regression is Pearson’s cor-
relation. The weakness of univariate filter approaches is that they cannot 

Fig. 1. Schematic flowchart of the proposed procedure. Three different data sources are explored. These data are processed to obtain a spatial map of administrative 
level-1 regions, the case of an Italian region (Lombardy) is shown. Finally, a regression model evaluates the association between COVID-19 mortality and pollutants. 

Fig. 2. Absolute humidity over Europe; January 1 – December 2019.  
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account for multivariate relationships; it is not uncommon that two 
features which singularly taken provide a poor association with the 
target when combined can account for significant effects (Duda et al., 
1973). 

Wrapper and embedded methods exploit a learning model (both for 
classification and regression) to assess the importance of available fea-
tures. The main difference is that in embedded methods classification is 
performed internally, e.g. RF. Boruta (Kursa and Rudnicki, 2010) is a 
wrapper method whose basic idea relies in comparing the importance of 
a feature with unimportant features, called shadow features. A model is 
fed with a subset of features, based on its performance it is possible to 
add or remove features from the subset until an optimal set is defined. 
Among wrapper methods, Boruta main advantages are that (i) it can find 
the subset of all the relevant input variable for a given regression task 
without requiring any a priori discrimination threshold and (ii) it pro-
vides a measure of statistical significance for the adopted features. 

Boruta consists of the following 4 main steps:  

1. Random shuffled copies of the available features, called shadow 
features, are created;  

2. A RF is trained and the importance of each feature is computed;  
3. It is checked whether a real feature is more important or not than the 

most important shadow feature, accordingly it is kept or removed;  
4. Iterations are repeated until importance is assigned to all features or 

the algorithm has reached a previously set limit of iterations. 

In Boruta algorithm, features do not compete among themselves but 
they compete with randomized variables, which, by definition, cannot 
be considered “important”. 

4. Results 

4.1. Correlation analysis 

Before examining the accuracy our model and assessing the statis-
tical association between pollutants’ concentrations and COVID-19 
mortality, we performed a correlation analysis to exclude the presence 
of strong correlations between the variables included in the model. 
Firstly, we evaluated the correlations among pollutants’ concentrations 
retrieved from remote sensing data, see the panel (a) of Fig. 3. 

In absolute terms, we observed the highest correlation r between 
humidity and cloud fraction, in fact these variables were anti-correlated 
(r = − 0.52). We judged that the observed correlations were not pre-
venting the use of any of these variables. Accordingly, we kept all the 

pollution variables within the model. Analogously, we investigated the 
correlations between climate and socio-demographic variables, Fig. 3 
panel (b). 

Even in this case, we observed that the two most correlated variables 
(r = 0.68) were the number of physicians and the people with age over 
70. Correlations ranging from 0.6 to 0.8 are generally considered 
moderate, therefore we did not exclude any socio-demographic variable 
from the analysis. From both correlation analyses, we also concluded 
that COVID-19 mortality was weakly linearly correlated with the vari-
ables considered in our study. The strongest correlations were observed 
with NO2 (r = 0.3) and life expectancy (r = 0.34). The same correlation 
analysis was carried out by pooling all the available variables but even in 
this case no strong correlation was detected, thus no variable should be 
removed. 

4.2. Statistical association between pollution and COVID-19 

We estimated the statistical association between COVID-19 mortality 
and the proposed descriptors using a RF regression, the results obtained 
by 5000 cross-validation rounds were averaged to obtain a unique 
representation, see Fig. 4 for the average results. 

Fig. 3. Correlation matrices for socio-demographic, climate and pollution features and COVID-19 mortality.  

Fig. 4. RF average predictions over 5000 iterations against COVID-19 mortality 
(deaths per million). 
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The previous Fig. 5 shows the scores obtained by averaging the 
scores of 5000 iterations performed against the actual deaths per million 
caused by COVID-19. We quantitatively assessed the model performance 
in terms of median and standard deviation; we obtained Pearson’s cor-
relation r = 0.75 ± 0.09 and Mean Absolute Logarithmic Error MALE =
0.217 ± 0.031. 

4.3. Comparison between models 

To evaluate to which extent the regression accuracy was affected by 
the choice of a particular model, we compared the RF performance with 
other methods: a linear model (LM), a neural network model, specif-
ically a multi-layer perceptron (MLP), and a Support Vector Machine 
(SVM) regression, see Fig. 5. 

RF resulted the best performing method in terms of both metrics (r =
0.76 ± 0.09 and MALE = 0.217 ± 0.031) followed by the LM (r = 0.72 ±
0.11 and MALE = 0.231 ± 0.034), SVM (r = 0.69 ± 0.10 and MALE =
0.217 ± 0.029) and MLP (r = 0.65 ± 0.12 and MALE = 0.258 ± 0.036). 
RF resulted the best performing method both in terms of correlation and 
MALE, the observed differences (between RF and the other methods) 
were statistically significantly with p-value p < 0.01 according to a 
Wilcoxon test. 

Besides, we investigated the agreement of the four proposed models. 
The goal of this analysis was to evaluate whether different models were 
prone to misclassify different examples and therefore to evaluate the 
possibility to consider a combination to improve the overall perfor-
mance. Results can be visually inspected in Fig. 6. 

Despite these significant differences, all these models yield pre-
dictions with moderate/strong correlations; the correlation between RF 
and SVM is strong r(RF − SVM) = 0.86, while the ones between RF and 
MLP or LM are moderate, r(RF − MLP) = 0.79 and r(RF − LM) = 0.68, 
respectively. Interestingly, the minimum correlation is obtained for the 
best performing methods. 

4.4. Feature importance 

To evaluate the importance of all available features and rank them 

accordingly we exploited the Boruta method. The analysis was per-
formed over the whole set using a sufficiently high number of iterations 
(1000) allowing the algorithm to reach a definite decision about all the 
features; we implemented Boruta with 100 auxiliary shadow variables, 
the results are presented in Fig. 7. 

The most important features resulted life expectancy, followed by 
the number of nurses, the absolute humidity and the NO2 concentration 
with substantially equal importance. The socio-demographic variables 
were generally more important than the other features. 

4.5. Remote sensing vs demographic 

Feature importance analysis demonstrated how COVID-19 mortality 
is statistically associated with socio-demographic and climatic variables, 
although one pollutant, NO2, resulted the third feature by importance. 
One could wonder if the contribution of pollutants and climatic vari-
ables (remote sensing-based measurements) is relevant or not. Accord-
ingly, we performed a further analysis by separating remote sensing 
variables from socio-demographic features and trained the same model 
as before, see Fig. 8. 

The models trained using only remote sensing variables or only 
socio-demographic features showed a significant loss of accuracy, both 
in terms of correlation and MALE. 

5. Discussion 

This work presents a first attempt to extensively evaluate the sta-
tistical association between pollution and COVID-19 mortality over the 
European region using remote sensing imagery. Using S-5p data for 
pollutants’ concentrations and online repositories for climatic and socio- 
demographic data, we used a RF to model COVID-19 mortality in terms 
of these features. This study can be considered an extension of previous 
ecological studies conducted in Europe for at least three different rea-
sons (Wu et al., 2020b; Ogen, 2020; Cole et al., 2020; Liang et al., 2020; 
Fiasca et al., 2020; Cazzolla Gatti et al., 2020). First of all, previous 
studies reached (according to different experimental design and 
different data) not conclusive findings about the association between 

Fig. 5. Comparison of the different regression models for the COVID-19 mortality prediction in terms of Pearson’s correlation (left panel) and Mean Absolute 
Logarithmic Error (right panel). 
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pollution and COVID-19 mortality; the database considered here 
examined several months of observations, thus extending the temporal 
range of our study and granting increased robustness to the analyses. 
Another major difference here is the use of socio-demographic variables, 
which have been previously used only at smaller scales or in studies over 
the USA. Finally, and most importantly, this is the first machine learning 
study including a Boruta feature importance evaluation to quantify the 
role played by predictors. 

On the one hand, our findings show that NO2 and life expectancy are 
weakly correlated to the target variable, the COVID-19 mortality, 
therefore a linear relationship between these factors and the target 
should be excluded. On the other hand, we observed that COVID-19 
mortality can be accurately predicted (r = 0.74 ± 0.09 and MALE =
0.217 ± 0.031) with a RF model, thus suggesting the presence of non- 

linear interactions between the features considered in the study and 
the target. 

These findings are also confirmed when using other regression 
strategies: LM (r = 0.70 ± 0.11 and MALE = 0.231 ± 0.034), SVM (r =
0.68 ± 0.10 and MALE = 0.217 ± 0.029) and MLP (r = 0.63 ± 0.12 and 
MALE = 0.258 ± 0.036). In fact, we observed that the accuracy of 
predictions slightly depended on the choice of the adopted model and all 
the investigated models yield predictions moderately or strongly 
correlated; this would suggest that the association between COVID-19 
mortality and our features is not a statistical occurrence. The 
simplicity of a linear model could make this model preferable over the 
slightly (but significant) performance improvement of RF which comes 
at the cost of huge computational requirements and less interpretability. 
Although linear models could be preferred, for the sake of 

Fig. 6. RF predictions (y-axis) against the MLP (left), SVM (top right) and LM (bottom right) predictions (x-axes).  

Fig. 7. Feature Importance measured by the Boruta analysis.  
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interpretability (Gibson et al., 2019), it should also kept in mind that RF 
is a robust choice and it does not require any a priori assumption. Be-
sides, combining RF with the Boruta feature importance makes the 
framework completely intelligible. 

We also performed a feature importance analysis, according to which 
life expectancy resulted the most important feature to predict COVID-19 
mortality. This result confirms findings from other studies (Cole et al., 
2020; Chaudhry et al., 2020) independently from the adopted method-
ologies. This result reasonably confirms the increment of COVID-19 
mortality with age. Although, life expectancy grows with a nation’s 
wealth and therefore its capability to take care of elder people, other 
sources of heterogeneity, like the different sanitary systems or policies, 
prevent this variable to reliably account for the overall morality. 

According to this study, other important features were the number of 
physicians, nurses and hospital beds which are likely to be good proxy 
for the capacity of the health systems in the administrative units. These 
findings would enforce the robustness of our study as the same results 
were independently observed by other studies which, at a country level, 
showed how the capacity of a health system affects mortality (Fisher 
et al., 2000; Karaca-Mandic et al., 2020). Although some authors (Wu 
et al., 2020b) find these conclusions controversial, our findings suggest 
that these features are accordingly important predictors for COVID-19 
mortality. Analogously, socio-demographic features like gross domes-
tic product per capita, mean years of schooling of population aged 25 
and expected years of schooling for children aged 6 were confirmed to 
be important; other studies suggested that accounting for the develop-
ment level of the sanitary systems and the population mobility 
(Chaudhry et al., 2020) these variables can play an important role 
during pandemic. 

Regarding the association between air pollution and Covid-19 mor-
tality, NO2 tropospheric column was the most important feature; on the 
contrary SO2, CO, HCHO and AER AI were rejected. Interestingly, these 
results would suggest to neglect the majority of pollutants, except for 
NO2, but we also demonstrated that the combination of pollutants with 
climatic and socio-demographic features ensures an accuracy otherwise 
inaccessible. Regarding the association between exposition to NO2 and 
COVID-19 mortality, it should always kept in mind that our study cannot 
assess any causality by design. If a causality exists, this might be related 
to the role of NO2 in contributing to the development of asthma and 
respiratory infections, causing a range of harmful effects on lungs 
(Pilotto et al., 1997; Gamble et al., 1987; Kubota et al., 1987). Moreover, 
premature deaths are attributable to long-term air pollution exposure 
(Khomenko et al., 2021). On the other hand, the statistical association 
with NO2 be confounded by an omitted-variable bias. 

Minor effects can also be imputed to humidity and diabetes. Ac-
cording to other studies, these contributions are still unclear (Mecenas 
et al., 2020; Rashed et al., 2020; Lin et al., 2020; Shi et al., 2020; Hussain 

et al., 2020). Among these, a particular mention is deserved by the 
average population density. We found this feature to be the least 
important among the selected variables. In literature, opposite conclu-
sions are presented (Wu et al., 2020b; Rashed et al., 2020; Kadi and 
Khelfaoui, 2020), thus confirming the elusiveness of such association. 

It is important to acknowledge some limitations of the present study. 
It is worth noting that the models adopted here present two main sources 
of bias affecting the interpretation of the results, namely omitted- 
variable bias and multicollinearity (Jargowsky, 2005; Cinelli and 
Hazlett, 2020; Rinella et al., 2020). The omission of a variable cannot be 
treated as it depends on the contingency of the study design and even-
tually on the available data, for example in the present study no de-
mographic breakdown was considered. Besides, multicollinearity leads 
learning models, such as Random Forests, to spread feature importance 
across collinear variables (Strobl et al., 2008), so that these findings 
should be considered cum grano salis. Similarly, a linear regression 
model could flip a coefficient’s sign and increase its variance (Greene, 
2003; Belsley et al., 2005). Finally, both linear regression and negative 
Bernoulli model results can be unstable against removing or adding 
additional variables (especially when fed with data having small 
cardinality). 

The importance of pollutants in modeling the COVID-19 severity has 
been thoroughly investigated from several perspectives. For example, a 
remote sensing investigation on a regional scale has already revealed the 
association between NO2 levels and COVID-19 mortality (Ogen, 2020). 
However, some aspects should be considered with caution. First of all, 
correlation does not imply causation and, therefore, it should always 
kept in mind that these findings reveal a statistical association between 
COVID-19 and pollution not a causal relationship. Besides, the use of 
S-5p data for the purpose of measuring ground level pollution has 
intrinsic limitations: NO2 is mainly a street-level pollutant and the 
concentration measured in the total column could be affected by a 
considerable uncertainty (Pisoni and Van Dingenen, 2020). 

6. Conclusions 

In this work, we presented a machine learning framework combining 
pollutants’ concentrations, climatic variables and socio-demographic 
features to model COVID-19 mortality. As far as we know, this is the 
first work to attempt such a goal on a continental scale. We considered 
European administrative units and used a RF model to predict COVID-19 
mortality. The resulting model was characterized by both accuracy and 
robustness. Besides, we were able to evaluate and rank the importance of 
the variables included in the model and found that the four key factors 
for modeling the mortality were life expectancy, number of nurses, ab-
solute humidity and NO2 concentration. However, uncertainty about 
street-level concentrations of pollutants should be considered as a 

Fig. 8. Comparison of the different regression models for the COVID-19 mortality prediction in terms of Pearson’s correlation (left panel) and Mean Absolute 
Logarithmic Error (right panel). 
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potentially limiting factor weakening the role played by NO2; accord-
ingly, further studies, possibly involving street-level measurements 
should be taken into account. 
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